Margin-Based Asset Pricing and Deviations from the Law of One Price

Nicolae Gârleanu Berkeley, CEPR, and NBER

Lasse H. Pedersen NYU, CEPR, and NBER

Motivation: Margin-Based Asset Pricing and LoOP

- Key limit of arbitrage: margin constraints
- These constraints can become binding; e.g., since 2007:
 - Many traditional liquidity providers have become forced sellers
- One remarkable consequence: Failure of Law of One Price
 - Corporate-bond basis: price gap between bond and CDS
 - Covered interest-rate parity
- Key question: How do margins affect asset prices?

What We Do

• Standard Lucas economy, extended in minimal way:

- with 2 two agents
- facing margin constraints
- Derive equilibrium: Margin CAPM
- Quantify effects of margin
- Help explain:
 - CDS-bond basis
 - Failure of covered interest-rate parity (CIP)
 - The effects of the Fed's lending facilities
 - The incentive for regulatory arbitrage

Results: Theory

Margin (C)CAPM

$$E_t(r^i) - r_t^c = \lambda_t \beta_t^i + \psi_t x_t m_t^i$$

• Shadow cost of capital ψ_t can be captured by

• interest-rate spreads (LIBOR minus GC repo).

- Binding constraints, $\psi_t > 0$ (e.g., since August 2007):
 - occur following bad fundamental shocks
 - increase Sharpe market ratio: $SR = \bar{SR} + f(x_t) \left(\frac{\bar{SR}}{\bar{\sigma}} \frac{1}{m}\right)^+$
- Basis: can arise due to difference in margins

$$E_t(r^i) - E_t(r^{i_k}) = \left(\beta_t^{C^b,i} - \beta_t^{C^b,i_k}\right) + \psi_t(m_t^i - m_t^{i_k})$$

• High-margin assets have high sensitivity to funding risk

Results: Applications

- Calibrate model using standard parameters: consumption growth, discount rate, risk aversion, observed margins
 - Large pricing effect of binding constraints
 - Collateralized interest rates drop
 - Interest-rate spreads blow out
 - Margin premium rises
 - High margin assets have high sensitivity to funding risk
 - higher beta
 - higher comovement with each other
- Consistent with model, CDS-bond basis related to:
 - credit tightness (time series)
 - relative margin requirements (cross section)
- Relate interest-rate spread to failure of covered interest parity
- Transmission of unconventional monetary policy:
 - Compute effect of Fed's lending facilities on asset values
- Quantify banks' incentives to loosen capital requirements

Related Literature

- Heterogeneous risk-aversion economies: Dumas (1989); Basak and Cuoco (1998), Chan and Kogan (2002)
- Collateral value: Bernanke and Gertler (1989), Detemple and Murthy (1997), Geanakoplos (1997), Kiyotaki and Moore (1997), Caballero and Krishnamurthy (2001), Lustig and Van Nieuwerburgh (2005), Shleifer and Vishny (2009)
- Equilibrium restrictions with portfolio constraints: Hindy (1995), Hindy and Huang (1995), Cuoco (1997), Aiyagari and Gertler (1999)
- Limits of arbitrage: Shleifer and Vishny (1997), and possible 'arbitrage' in equilibrium: Basak and Croitoru (2000, 2006), Geanakoplos (2003)
- Margin spiral, theory: Brunnermeier and Pedersen (2009); Evidence: Gorton and Metrick (2009)
- Direct evidence from Fed that bids depend significantly on haircuts: Ashcraft, Garleanu, and Pedersen (2009)

Model Required Returns Explicit Equilibrium Calibration

Model: Assets

- Continuous-time endowment economy
- Multiple assets in positive supply, characterized by
 - dividend stream: δ_t^i
 - margin requirement: mⁱ_t
 - endogenous price: $dP_t^i = (\mu_t^i P_t^i \delta_t^i) dt + P_t^i (\sigma_t^i)^\top dB_t$
- Multiple "derivatives":
 - derivative i_k has the same payoffs δ_t^i as asset i
 - smaller margin: $m_t^{i_k} \leq m_t^i$
- Two types of risk-free lending/borrowing:
 - collateralized (rate r_t^c)
 - uncollateralized (rate r_t^u)

Model Required Returns Explicit Equilibrium Calibration

Model: Agents

- Two types of agents g = a, b:
 - Risk averse: $\gamma^a > 1$
 - Risk tolerant (brave): $\gamma^{b} = 1$ (i.e., log)
- Utility: constant relative risk aversion

$$\max_{C^{g},\theta^{i},\eta^{\mu}} \mathsf{E}_{0} \int_{0}^{\infty} e^{-\rho s} \frac{\left(C_{s}^{g}\right)^{1-\gamma^{g}}}{1-\gamma^{g}} \, ds$$

- Constraints:
 - Solvency: $W_t \ge 0$

• Funding constraint:
$$\sum_{i} m_{t}^{i} |\theta_{t}^{i}| + \eta_{t}^{u} \leq 1$$

- Agent a
 - Does not lend uncollateralized
 - Faces derivative-trading restrictions

Model Required Returns Explicit Equilibrium Calibration

Shadow Cost of Capital

Agent b solves

$$\max_{\theta_t^i, \eta_t^u} \left\{ r_t^c + \eta_t^u \left(r_t^u - r_t^c \right) + \sum_i \theta_t^i (\mu_t^i - r_t^c) - \frac{1}{2} \sum_{i,j} \theta_t^i \theta_t^j \sigma_t^i (\sigma_t^j)^\top \right\}$$

subject to $\sum_i m_t^i |\theta_t^i| + \eta_t^u \leq 1.$

Proposition: The shadow cost of the margin constraint is

$$\psi_t = r_t^u - r_t^c$$

Proposition: If agent b is long asset i, its excess return is

$$\boxed{\mu_t^i - r_t^c = \beta_t^{C^b, i} + \psi_t m_t^i} \text{ where } \beta_t^{C^b, i} = \operatorname{cov}_t \left(\frac{dC^b}{C^b}, \frac{dP^i}{P^i}\right)$$

Model Required Returns Explicit Equilibrium Calibration

CCAPM with Margins

Suppose that agent a is unconstrained w.r.t. asset i and let

$$\frac{1}{\gamma_t} = \frac{1}{\gamma^a} \frac{C_t^a}{C_t} + \frac{1}{\gamma^b} \frac{C_t^b}{C_t}$$
$$x_t = \frac{\frac{C_t^b}{\gamma^b}}{\frac{C_t^a}{\gamma^a} + \frac{C_t^b}{\gamma^b}}$$
$$\beta_t^{C,i} = \operatorname{cov}_t \left(\frac{dC}{C}, \frac{dP^i}{P^i}\right)$$

Proposition:

$$\mu_t^i - r_t^c = \gamma_t \beta_t^{C,i} + x_t \psi_t m_t^i$$

Model Required Returns Explicit Equilibrium Calibration

CAPM with Margins

Let ${\it q}$ be the portfolio with highest correlation with aggregate consumption and

$$egin{array}{rcl} eta_t^i &=& rac{ ext{cov}_t\left(rac{dP^i}{P^i},rac{dP^q}{P^q}
ight)}{ ext{var}_t\left(rac{dP^q}{P^q}
ight)} \end{array}$$

Proposition:

$$\mu_t^i - r_t^c = \lambda_t \beta_t^i + x_t \psi_t m_t^i$$

Model Required Returns Explicit Equilibrium Calibration

Basis Trades

Proposition:

• If agent b is long asset i and derivative i_k

$$\mu_t^i - \mu_t^{i_k} = \psi_t \left(m_t^i - m_t^{i_k} \right) + \left(\beta_t^{C^b, i} - \beta_t^{C^b, i_k} \right)$$

• If he is long i and short i_k , then

$$\mu_t^i - \mu_t^{i_k} = \psi_t \left(m_t^i + m_t^{i_k} \right) + \left(\beta_t^{C^b, i} - \beta_t^{C^b, i_k} \right)$$

• The derivative price P^{i_k} decreases with m^{i_k} .

Model Required Returns Explicit Equilibrium Calibration

Specializing the setup for tractability to consider explicit equilibrium and calibration:

- Aggregate consumption C is geometric Brownian motion
- Continuum of underlying assets with dividend $\delta^i = C s^i$, where s^i independent martingales
- All underlying assets have the same margin $m^i = m$
- Derivatives with $m^{i_k} \leq m$ traded only by b

Model Required Returns Explicit Equilibrium Calibration

Solving Explicitly

- It suffices to calculate equilibrium as if there were one underlying paying *C* and derivatives on it
- State variables: C and $c^b = C^b/C$
- Pricing kernel for underlying assets: Agent *a* is marginal:

$$\begin{aligned} \xi_t &= e^{-\rho t} (C^a)^{-\gamma^a} \\ d\xi_t &= \xi_t \left(\mu_t^{\xi} dt + \sigma_t^{\xi} dw_t \right) \end{aligned}$$

• Collateralized interest rate:

$$r_t^c = -\mu_t^{\xi} = -\frac{\mathcal{D}\left(e^{-\rho t} \left(C_t^a\right)^{-\gamma^a}\right)}{e^{-\rho t} \left(C_t^a\right)^{-\gamma^a}}$$

• Market price of aggregate wealth $P_t = C_t \zeta(c_t^b)$:

$$P_t\xi_t = \mathsf{E}_t \int_t^\infty C_s\xi_s\,ds$$

Model Required Returns Explicit Equilibrium Calibration

Solution

Proposition:

• Agent b's margin constraint binds iff

$$\frac{\mu - r^{c}}{\sigma^{2}} = \frac{SR}{\sigma} \geq \frac{1}{m}$$

- The price-to-dividend ratio P_t/C_t = ζ(c_t^b) is given as the solution to an ODE and all other endogenous variables are explicit functions of ζ.
- Binding margin constraint increases the Sharpe Ratio:

$$SR = \bar{SR} + rac{x}{1-x} rac{ar{\sigma}}{1-rac{\zeta'cb}{m\zeta}} \left(rac{\bar{SR}}{ar{\sigma}} - rac{1}{m}
ight)^+$$

where $\bar{SR} = \gamma \sigma^{C}$ and $\bar{\sigma}$ are the Sharpe and return volatility without constraints.

Model Required Returns Explicit Equilibrium Calibration

Limit Basis

Proposition:

As $c^b \rightarrow 0$, the basis between asset i and derivative i_k becomes

$$\mu^i - \mu^{i_k} = \psi(m^i - m^{i_k})$$

where

$$\psi = \frac{\left(\sigma^{\mathcal{C}}\right)^2}{m} \left(\gamma^a - \frac{1}{m}\right)^+$$

In the cross section of asset-derivative pairs,

$$rac{\mu^{i} - \mu^{i_{k}}}{m^{i} - m^{i_{k}}} = rac{\mu^{j} - \mu^{j_{k}}}{m^{j} - m^{j_{k}}}$$

Model Required Returns Explicit Equilibrium Calibration

Calibration: Parameters

• We use the following parameter values

μ^{C}	σ^{C}	γ^{a}	ρ	т	m ^{med}	m ^{low}
0.03	0.08	8	0.02	0.4	0.3	0.1

- Constraint binds for $c^b \leq 0.22$
- Since *b* is levered more than *a*, low *c^b* is the result of bad shocks to fundamentals

Model Required Returns Explicit Equilibrium Calibration

Calibration: Interest Rates

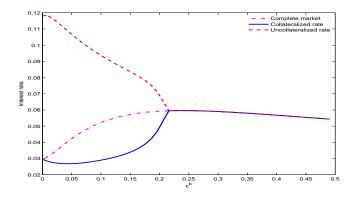


Figure: Interest rates: complete markets, collateralized with constraints (r^c) , and uncollateralized with constraints (r^u) .

Introduction Model Theory Required Returns Applications Explicit Equilibriur Conclusion Calibration

Calibration: Bases

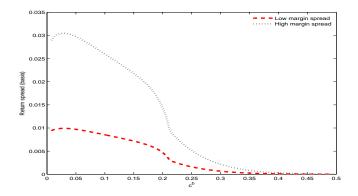


Figure: Return spreads of high-margin underlying versus low-margin derivative (i.e., large margin spread $m^{underlying} - m^{low} = 30\%$) and versus intermediate-margin derivative (i.e., small margin spread $m^{underlying} - m^{medium} = 10\%$).

Model Required Returns Explicit Equilibrium Calibration

Calibration: Sharpe Ratios

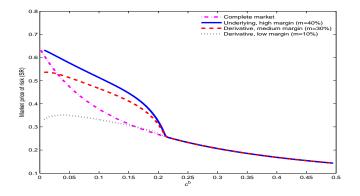


Figure: Sharpe ratios: complete markets, underlying with constraints, and two derivatives with constraints.

Model Required Returns Explicit Equilibrium Calibration

Calibration: Price Premium

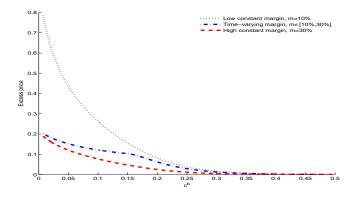


Figure: Price Premium. The figure shows how the price premium, $P^{derivative}/P^{underlying} - 1$ for three derivatives with identical cash flows and different margins.

Monetary Policy and Lending Facilities

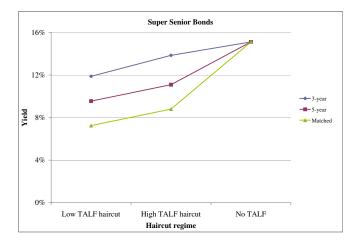
- Term Auction Facility (TAF) December 2007
- Term Securities Lending Facility (TSLF) March 2008
- Term Asset-Backed Securities Loan Facility (TALF) November 2008
- Goal: Improve funding conditions and "help market participants meet the credit needs of households and small businesses by supporting the issuance of asset-backed securities"
- The model suggests that when the Fed offers lower margins, required returns go down:

$$E(r^{i,Fed}) - E(r^{i,no \ Fed}) \approx \psi(m^{Fed,i} - m^{i}) < 0$$

• I.e., ABS prices go up, and access to credit eases, helping the real economy

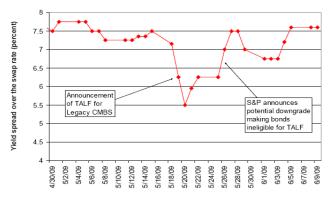
Monetary Policy and Lending Facilities CDS-Bond Basis Failure of the Covered Interest Rate Parity Regulatory Arbitrage

Two Monetary Tools: Interest Rates and Haircuts (Ashcraft, Garleanu, and Pedersen (2009))



Monetary Policy and Lending Facilities CDS-Bond Basis Failure of the Covered Interest Rate Parity Regulatory Arbitrage

Evidence on Monetary Policy and Margins Affecting Prices (Ashcraft, Garleanu, and Pedersen (2009)



AAA CMBS Yield Spreads (10yr)

Figure: Market reaction to TALF-related announcements.

N. Gârleanu and L. H. Pedersen Margin-Based Asset Pricing

Introduction Monetary Policy and Lending Facilities Theory CDS-Bond Basis Applications Failure of the Covered Interest Rate Parit Conclusion Regulatory Arbitrage

CDS-Bond Basis: Time Series

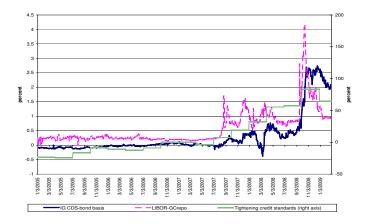


Figure: The CDS-Bond basis, the LIBOR-GCrepo Spread, and Credit Standards.

Introduction Monetary Policy and Lending Facilities Theory CDS-Bond Basis Applications Failure of the Covered Interest Rate Parity Conclusion Regulatory Arbitrage

CDS-Bond Basis: Cross Section

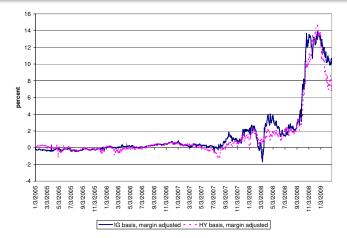


Figure: Investment Grade (IG) and High Yield (HY) CDS-Bond Bases, Adjusted for Their Margins.

Introduction Monetary Policy and Lending Facilities Theory CDS-Bond Basis Applications Failure of the Covered Interest Rate Parity Conclusion Regulatory Arbitrage

Failure of the Covered Interest Rate Parity

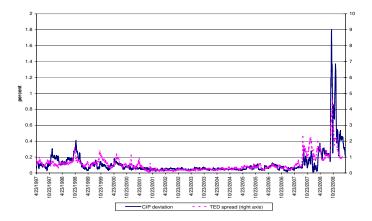


Figure: Average Deviation from Covered-Interest Parity and the TED Spread.

 Introduction
 Monetary Policy and Lending Facilities

 Theory
 CDS-Bond Basis

 Applications
 Failure of the Covered Interest Rate Parity

 Conclusion
 Regulatory Arbitrage

Regulatory Arbitrage

- Pressure to free capital by moving assets off the balance sheet or titling portfolios towards low capital-requirement assets
- Basel requirement is similar to the margin constraint

$$\sum_{i} m^{Reg,i} |\theta^{i}| \leq 1$$

• Required return increased by $m^{{\it Reg},i}\psi$

Conclusion

- Margin-based general-equilibrium model
 - Strong asset pricing predictions
 - Predicts that a decline in fundamentals leads to
 - Binding constraints
 - Drop in Treasury and GC repo rates
 - Spikes in interest-rate spreads, risk premium, margin premium
 - Basis between securities with identical cash flows, related to margin differences
- Calibrated model predicts large margin premium in crisis
- Applications:
 - CDS-bond basis
 - Covered interest parity
 - Monetary policy, fed lending facilities
 - Banks' incentives to use off-balance-sheet instruments