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Abstract 

We address the problem of allocating the counterparty-level credit valuation 
adjustment (CVA) to the individual trades composing the portfolio. We show that 
this problem can be reduced to calculating contributions of the trades to the 
counterparty-level expected exposure (EE) conditional on the counterparty’s 
default. We propose a methodology for calculating conditional EE contributions 
for both collateralized and non-collateralized counterparties. Calculation of EE 
contributions can be easily incorporated into exposure simulation processes that 
already exist in a financial institution. We also derive closed-form expressions for 
EE contributions under the assumption that trade values are normally distributed. 
Analytical results are obtained for the case when the trade values and the 
counterparty’s credit quality are independent as well as when there is a 
dependence between them (wrong-way risk). 
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1. Introduction 

For years, the standard practice in the industry was to mark derivatives portfolios to 
market without taking the counterparty credit quality into account. In this case, all cash flows are 
discounted using the LIBOR curve, and the resulting values are often referred to as risk-free 
values.4 However, the true value of the portfolio must incorporate the possibility of losses due to 
counterparty default. The credit valuation adjustment (CVA) is, by definition, the difference 
between the risk-free portfolio value and the true portfolio value that takes into account the 
counterparty’s default. In other words, CVA is the market value of counterparty credit risk.5 

There are two approaches to measuring CVA: unilateral and bilateral (see Picoult, 2005 
or Gregory, 2009). Under the unilateral approach, it is assumed that the counterparty that does 
the CVA analysis (we call this counterparty a bank throughout the paper) is default-free. CVA 
measured this way is the current market value of future losses due to the counterparty’s potential 
default. The problem with unilateral CVA is that both the bank and the counterparty require a 
premium for the credit risk they are bearing and can never agree on the fair value of the trades in 
the portfolio. Bilateral CVA takes into account the possibility of both the counterparty and the 
bank defaulting. It is thus symmetric between the bank and the counterparty, and results in an 
objective fair value calculation.  

Under both, the unilateral and bilateral approaches, CVA is measured at the counterparty 
level. However, it is sometimes desirable to determine contributions of individual trades to the 
counterparty-level CVA. The problem of calculating CVA contributions bears many similarities 
to the calculation of risk contributions and capital allocation (see Aziz and Rosen 2004, Mausser 
and Rosen 2007). There are several possible measures of CVA contributions. We refer to the 
CVA of each transaction on a stand-alone basis as the transaction’s stand-alone CVA. Clearly, 
when the given portfolio does not allow for netting between trades, the portfolio-level CVA is 
given by the sum of the individual trades’ stand-alone CVA. However, this is not the case when 
netting and margin agreements are in place. We refer to the incremental CVA contribution of a 
trade as the difference between the portfolio CVA with and without the trade.6 This measure is 
commonly seen as appropriate for pricing counterparty risk for new trades with the counterparty 
(see Chapter 6 in Arvanitis and Gregory, 2001 for details). One problem with incremental CVA 
contributions is that they are non-additive – the sum of the individual trade’s CVA contributions 
does not add up to the portfolio’s CVA. Hence neither stand-alone nor incremental contributions 
can be used effective contributions of existing trades in the portfolio to the counterparty-level 
CVA, in the presence of netting and/or margin agreements. For this purpose we require additive 
CVA contributions. In this case, we draw the analogy with the capital allocation literature and 
refer to these as (continuous) marginal risk contributions. 

                                                 
4 More precisely, LIBOR rates roughly correspond to AA risk rating and incorporate the typical credit risk of large 
banks. 
5 See Canabarro and Duffie (2003) or Pykhtin and Zhu (2007) for an introduction to counterparty credit risk and 
CVA.  
6 Sometimes these are referred to as discrete marginal contributions. 
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The marginal CVA contributions with a given counterparty give the bank a clear picture 
how much each trade contributes to the counterparty-level CVA. However, the use of CVA 
contributions is not limited to an analysis at a single counterparty level. Once the CVA 
contributions have been calculated for each counterparty, the bank can calculate the price of 
counterparty credit risk in any collection of trades without any reference to the counterparties. 
For example, by selecting all trades booked by a certain business unit or product type (e.g., all 
CDSs or all USD interest rate swaps), the bank can determine the contribution of that business 
unit or product to the bank’s total CVA. 

We show how to define and calculate marginal CVA contributions in the presence of 
netting and margin agreements, and under a wide range of assumptions, including the 
dependence of exposure on the counterparty’s credit quality. The theory of marginal risk 
contributions, sometimes refer to as Euler Allocations (see Tasche 2008), is now well developed 
and largely relies on the risk function being homogeneous (of degree one). We show that this 
principle can be applied readily for CVA when the counterparty portfolio allows for netting (but 
does not include collateral and margins). We further extend this allocation principle for the more 
general case of collateralized/margined counterparties  For the sake of simplicity, we assume the 
unilateral framework throughout the paper. However, an extension of all the results to the 
bilateral framework is straightforward.  

The paper is organized as follows. In Section 2, we define counterparty credit exposure 
for both collateralized and non-collateralized cases. We show how counterparty-level CVA can 
be calculated from the profile of the discounted risk neutral expected exposure (EE) conditional 
on the counterparty’s default. In Section 3, we introduce CVA contributions of individual trades 
and relate them to the profiles of conditional EE contributions. In Section 4, we adapt the 
continuous marginal contribution (CMC) method often used for allocating economic capital to 
calculating EE contributions for the case when the counterparty-level exposure is a homogeneous 
function of the trades’ weights in the portfolio. This is the case when there are no exposure-
limiting agreements, such as margin agreements, with the counterparty. When such agreements 
are present, the CMC method fails because the counterparty-level exposure is not homogeneous 
anymore. In Section 5, we propose an EE allocation scheme that is based on the CMC method, 
but can be used for collateralized counterparties. In Section 6, we show how to incorporate EE 
and CVA contribution calculations into exposure simulation process. In Section 7, we derive 
closed form expressions for EE contributions under the assumption that all trade values are 
normally distributed. We start with the case of independence between exposure and the 
counterparty’s credit quality, and extend the results to incorporate dependence between them 
(wrong-way risk). We also provide an intuitive explanation to our closed-form results. In Section 
8, we show several numerical examples that illustrate the behavior of exposure (and hence CVA) 
contributions for both, the collateralized and non-collateralized cases.  
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2. Counterparty credit risk and CVA 

In this section, we review the basic concepts and notation for counterparty credit risk, 
credit exposures and CVA. 

Counterparty credit risk (CCR) is the risk that the counterparty defaults before the final 
settlement of a transaction's cash flows. An economic loss occurs if the counterparty portfolio 
has a positive economic value for the bank at the time of default. Unlike a loan, where only the 
lending bank faces the risk of loss, CCR creates a bilateral risk: the market value can be positive 
or negative to either counterparty and can vary over time with the underlying market factors. We 
define the counterparty exposure ( )E t  of the bank to a counterparty at time t  as the economic 
loss, incurred on all outstanding transactions with the counterparty if the counterparty defaults at 
t , accounting for netting and collateral but unadjusted by possible recoveries.   

2.1  Counterparty exposures 

Consider a portfolio of N derivative contracts of a bank with a given counterparty. The 
maturity of the longest contract in the portfolio is T . The counterparty defaults at a random time 
τ  with a known risk-neutral distribution ( ) Pr[ ]P t tτ≡ ≤ .7 We further assume that the 
distribution of the trade values at all future dates is risk neutral.8 

Denote the value of the ith instrument in the portfolio at time t from the bank’s 
perspective by ( )iV t . At each time t, the counterparty-level exposure ( )E t  is determined by the 

values  of all trades with the counterparty at time t, 1{ ( )}N
i iV t =  . The value of the counterparty 

portfolio at t  is given by 

 
1

( ) ( )
N

i
i

V t V t
=

=∑  (1) 

When netting is not allowed, the (gross) counterparty-level exposure ( )E t  is   

 ( ) { }
1

max 0, ( )
N

i
i

E t V t
=

=∑  (2) 

For a counterparty portfolio with a single netting agreement, the (netted) exposure is  

 { }( ) max ( ), 0E t V t=  (3) 

                                                 
7 The term structure of risk neutral probabilities of default can be obtained from credit default swaps spreads quoted 
for the counterparty on the market for different of different maturities. See, for example, Schönbucher (2003).   
8 See, for example, Brigo and Masetti (2005).  
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When the netting agreement is further supported by a margin agreement, the counterparty 
must provide the bank with collateral whenever the portfolio value exceeds a threshold. As the 
portfolio value drops below the threshold, the bank returns collateral to the counterparty. 
Collateral transfer occurs only when the collateral amount that needs to be transferred exceeds a 
minimum transfer amount. The counterparty-level (margined) exposure is given by 

 { }( ) max ( ) ( ), 0E t V t C t= −  (4) 

where ( )C t  is the collateral available to the bank at time t.  

Counterparty portfolios with a combination of multiple netting agreements and trades 
outside of these agreements can be modeled in a straightforward way by a combination of 
Equations (2)-(4). 

2.2  Models of Collateral 

We start modeling collateral with a simplifying assumption: we incorporate the minimum 
transfer amount into the threshold H  and treat the margin agreement as having no minimum 
transfer amount. This approximation is rather crude, but it is very popular amongst banks 
because it greatly simplifies modeling.  

We consider two models of collateral. In the instantaneous collateral model, we assume 
that collateral is delivered immediately and that the trades can be liquidated immediately as well. 
Under these simplifying assumptions, the collateral available to the bank is  

 { }( ) max ( ) ,0C t V t H= −  (5) 

The instantaneous collateral model is attractive because of its simplicity, but is rarely used in 
practice because its assumptions materially affect the exposure distribution.9 However, we use 
this model to show the simple, intuitive interpretation of our results for collateralized netting.   

A more realistic collateral model must account for the time lag between the last margin 
call made before default and the settling of the trades with the defaulting counterparty. This time 
lag, which we denote by tδ , is known as the margin period of risk. While the margin period of 
risk is not known with certainty, we follow the standard practice and assume that it is a 
deterministic quantity that is defined at the margin agreement level.10 We assume that the 
collateral available to the bank at time t  is determined by the portfolio value at time t tδ−  
according to 

 { }( ) max ( ) ,0C t V t t Hδ= − −  (6) 

                                                 
9 When the threshold is not too small, the instantaneous collateral model works reasonably well for expected 
exposure. See Pykhtin (2009).       
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We refer to this more realistic model as the lagged collateral model. While more difficult to 
implement, it is often used by banks to obtain results, which have more practical value.  

2.3  Credit losses and CVA 

In the event that the counterparty defaults at time τ , the bank recovers a fraction R of the 
exposure ( )E τ . The bank’s discounted loss due to the counterparty’s default is 

 { }(1 ) ( ) ( )1 TL R E Dτ τ τ≤= −  (7) 

where { }1 A  is the indicator function that takes value 1 when logical variable A  is true and value 0 

otherwise, ( )D t  is the stochastic discount factor process at time t, defined according to 
( ) tBBtD 0= , with tB  the value of the money market account at time t.  

The unilateral counterparty-level CVA is obtained by applying the expectation to 
Equation (7). This results in  

 
0

ˆCVA (1 ) ( ) ( )
T

R dP t e t∗= − ∫  (8) 

where ˆ ( )e t∗  is the risk-neutral discounted expected exposure (EE) at time t, conditional on the 
counterparty’s default at time t:  

 [ ]ˆˆ ( ) E ( ) ( ) E ( ) ( )te t D t E t D t E t tτ∗ = ≡  =    (9) 

Throughout this paper we use “star” to designate discounting and “hat” to designate conditioning 
on default at time t. Note that we have not made so far any assumptions on whether the exposure 
depends on the counterparty’s credit quality.  

3. CVA Contributions from EE Contributions 

We would like to develop a general approach to calculating additive contributions of 
individual trades to the counterparty-level CVA. We denote the contribution of trade i by CVAi . 
We say that CVA contributions are additive when they sum up to the counterparty-level CVA: 

 
1

CVA CVA
N

i
i=

=∑  (10) 

                                                                                                                                                             
10 The margin period of risk depends on the contractual margin call frequency and the liquidity of the portfolio. For 
example, 2tδ = weeks is usually assumed for portfolios of liquid contracts and daily margin call frequency. 
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Note that the recovery rate R and the default probabilities ( )P t  are defined at the counterparty 
level in Equation (8). Thus, the problem of calculating CVA contributions reduces to that of 
calculating contributions of individual trades to the portfolio conditional discounted EE, ˆ ( )ie t∗ , at 
each future date. To obtain additive CVA contributions, then the conditional discounted EE 
contributions must sum up to the portfolio conditional discounted EE: 

 
1

ˆ ˆ( ) ( )
N

i
i

e t e t
=

∗ ∗=∑  (11) 

and the CVA contribution of trade i can be calculated from its EE contribution according to 

 
0

ˆCVA (1 ) ( ) ( )
T

i iR dP t e t∗= − ∫  (12) 

Thus, from now on we focus on defining and calculating EE contributions.  

Note first that, without netting agreements, the allocation of the counterparty-level EE 
across the trades is trivial because the counterparty-level exposure is the sum of the stand-alone 
exposures (Equation (2)) and expectation is a linear operator. Furthermore, when there is more 
than one netting set with the counterparty (e.g., multiple netting agreements, non-nettable 
trades), we can focus on first calculating the CVA contribution of a transaction to its netting set. 
The allocation of the counterparty-level EE across the netting sets is then trivial again because 
the counterparty-level exposure is defined as the sum of the netting-set-level exposures. Thus, 
our goal is to allocate the netting-set-level exposure to the trades belonging to that netting set. To 
keep the notation simple, we assume from now on that all trades with the counterparty are 
covered by a single netting set.   

4. Additive EE Contributions for Non-collateralized Netting Sets  

In this section, we develop the basic methodology to compute EE contributions and 
allocate portfolio-level EE for non-collateralized netting sets.  

4.1  Continuous Marginal Contributions and Euler Allocation  

We derive EE contributions by adapting the continuous marginal contributions (CMC) 
method from the economic capital (EC) literature. EC is calculated at the portfolio level and then 
it is allocated to individual obligors and transactions. Under the CMC method, the risk 
contribution of a given transaction to the portfolio EC is determined by the infinitesimal 
increment of the EC corresponding to the infinitesimal increase of the transaction’s weight in the 
portfolio (see Chapter 4 in Arvanitis and Gregory (2001) or Tasche (2008) for details). This 
follows from the fact that the risk function is homogeneous (of degree one) and the application of 
Euler’s theorem.   
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A real function ( )f x  of a vector 1( , ... , )Nx x=x  is said to be homogeneous of degree β  

if for all 0c > , ( ) ( )f c c fβ=x x . If the function ( )f ⋅  is piecewise differentiable, then Euler’s 
theorem states that: 

 
1

( )
( )

N

i
i i

f
f x

x
β

=

∂
⋅ = ⋅

∂∑
x

x  (13) 

The risk measures most commonly used, such as standard deviation, value-at-risk (VaR) and 
expected shortfall, are homogeneous functions of degree one ( 1β = ) in the portfolio positions. 
Thus, Euler’s theorem is applied to allocate EC and compute risk contributions across portfolios.  

If x  denotes the vector of positions in a portfolio, and EC( )x  the corresponding 
economic capital, then Euler’s theorem implies additive capital contributions  

 
1

EC( ) EC ( )
N

i
i=

=∑x x  (14) 

where the terms  

 
i

EC( )
EC ( )i ixx

∂
= ⋅

∂
x

x  (15) 

are referred to as the marginal capital contributions of the portfolio.  

4.2  Continuous Marginal EE Contributions for netted exposures without collateral 

 Consider now the calculation of EE contributions. Assume that we can adjust the size of 
any trade in the portfolio by any amount. Define the weight iα  for trade i as a scale factor that 

represents the relative size of the trade in the portfolio, ( , ) ( )i i i iV t V tα α= . These weights can 

assume any real value, with 1iα =  corresponding to the actual size of the trade and 0iα =  being 
the complete removal of the trade. We describe adjusted portfolios via the vector of weights 

1( , , )Nα α=α K . For adjusted portfolios, we use the notations ( , )E tα , ˆ ( , )e t∗ α , andCVA( )α  for 
the exposure and EE at time t and CVA. Furthermore, for convenience, denote by (1, ,1)= K1  
the vector representing the original portfolio.  

When there is no margin agreement between the bank and the counterparty, the 
counterparty-level exposure is a homogeneous function of degree one in the trade weights: 

 ( , ) ( , )E c t cE t=α α  (16) 
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The intuition behind Equation (16) is simple: if the bank uniformly doubles the size of its 
portfolio with the counterparty by entering into exactly the same trade with the counterparty for 
each existing trade, the bank’s exposure doubles.  

We define the continuous marginal EE contribution of trade i at time t as the infinitesimal 
increment of the conditional discounted EE of the actual portfolio at time t resulting from an 
infinitesimal increase of trade i’s presence in the portfolio, scaled to the full trade amount:  

 
0

ˆ ˆ ˆ( , ) ( ) ( , )
ˆ ( ) lim i
i

i

e t e t e t
e t

δ

δ
δ α→

∗ ∗ ∗
∗

=

+ ⋅ − ∂
= =

∂ α 1

1 u α
 (17) 

where iu  describes a portfolio whose only component is one unit of trade i. Since the portfolio 
exposure is homogeneous in the trades’ weights, the EE contributions defined by Equation (17) 
automatically sum up to the counterparty-level conditional discounted EE by Euler’s theorem 
(Equation (13)).  

We can derive an expression for the marginal EE contributions as follows. First, 
substitute Equation (9) into Equation (17) and bring the derivative inside the expectation. This 
results in 

 
( , )ˆˆ ( ) E ( )i t

i

E t
e t D t

α
∗

=

 ∂
=  

∂  α 1

α
 (18) 

where exposure of the adjusted portfolio (with weight vector 1( , , )Nα α=α K ) is given by 

 
1

( , ) max ( ), 0
N

i i
i

E t V tα
=

 
=  

 
∑α  (19) 

Calculating the first derivative of the exposure with respect to the weight iα  and setting all 
weights to one, we have:  

       { } ( , ) 0 ( ) 0

( , ) ( , )
max ( , ), 0 ( ){ } { }1 1i

i i i
V t V t

E t V t
V t V t

α α α > >
= = =

∂ ∂ ∂
= = =

∂ ∂ ∂ α
α 1 α 1 α 1

α α
α      (20) 

Substituting Equation (20) into Equation (18), we obtain the EE contribution of trade i:  

 
( ) 0

ˆˆ ( ) E ( ) ( ) { }1i t i V t
e t D t V t∗

>
 =
  

 (21) 

The EE contribution of trade i is the expectation of a function which considers the discounted 
values of the trade on all scenarios where the total counterparty exposure is positive, or zero 
otherwise. As expected, the EE contributions sum up to the counterparty-level discounted EE: 
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 { }
1

( ) 0
ˆ ˆˆ ˆ( ) E ( ) ( ) E ( )max ( ),0 ( ){ }1

N

i t t
i

V t
e t D t V t D t V t e t

=

∗ ∗
>

 = = =    ∑  

5. Additive EE Contributions for Collateralized Netting Sets  

Consider now a counterparty that has a single netting agreement supported by a margin 
agreement, which covers all the trades with the counterparty. As discussed in Section 2, the 
counterparty-level stochastic exposure is given by Equation (4), where the collateral available to 
the bank is given either by the instantaneous collateral model (Equation (5)) or by the lagged 
collateral model (Equation (6)). In what follows, we specify additive EE contributions for both 
models, starting with the simpler instantaneous collateral model.  

5.1 Instantaneous Collateral Model 

Substituting Equation (5) into Equation (4), we obtain  

 { } { }0 ( ) ( )
( ) ( )1 1

V t H V t H
E t V t H

< < >
= +  (22) 

As can be seen from Equation (22), the expected exposure in not a homogeneous function of the 
trades’ weights and, hence, the CMC approach cannot be applied directly. From the 
mathematical point of view, the conditions of Euler’s theorem are not satisfied, and the CMCs, 
as given earlier, do not sum to the counterparty-level discounted EE anymore. To understand 
conceptually how the CMC method fails, notice that when the portfolio value is above the 
threshold, the counterparty-level exposure equals the threshold. An infinitesimal increase of any 
trade’s weight in the portfolio is not sufficient to bring the portfolio value below the threshold. 
Thus, the counterparty-level exposure is not affected by the infinitesimal weight changes, and the 
exposure contribution is zero for all scenarios with the portfolio value above the threshold. 
However, we still would like to “allocate” the non-zero collateralized counterparty-level 
exposure (equal to the threshold) to the individual trades, so that these allocations cannot be all 
equal to zero.   

We can derive additive contributions for this non-homogeneous case, which are 
consistent with the continuous marginal contributions as follows. First, notice that, while the 
exposure function in Equation (22) is not homogeneous in the vector of weights 1( , , )Nα α=α K , 
the function 

 ( ) ( ) ( ){ } ( ){ }0 , ,, , 1 1H
H HV t H V t HE t V t Hα αα< < >

′ = ⋅ + ⋅α αα α  (23) 

is a homogeneous function in the extended vector of weights  1' ( ,..., , )N Hα α α=α . That is, we 
consider scaling the each of the trades as well as the threshold H. Thus, we can think of the 
contribution of the threshold itself to the counterparty-level exposure. 

The first derivatives of the exposure with respect to the trade weights is given by 
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 { }0 ( )

( , )
( ) 1i

i
V t H

E t
V t

α < ≤
=′

′∂
= ⋅

∂ α 1

α
 (24) 

Similarly, the derivative with respect to the threshold weight is 

 { }( )

( , )
1

H
V t H

E t
H

α >
=′

′∂
= ⋅

∂ α 1

α
 (25) 

Note that these sum up to the counterparty-level exposure given by Equation (22), as expected. 
By applying discounting and taking conditional expectation of the right-hand side of Equations 
(24) and (25), we obtain the EE contributions of the trades 

 { }, 0 ( )
ˆˆ ( ) E ( ) ( ) 1i H t i V t He t D t V t∗

< ≤
 = ⋅ ⋅  

 (26) 

and of the threshold  

 { }( )
ˆˆ ( ) E ( ) 1H t V t He t H D t∗

>
 = ⋅ ⋅  

 (27) 

which satisfy  

 ,
1

ˆ ˆ ˆ( ) ( ) ( )
N

i H H
i

e t e t e t
=

∗ ∗ ∗= +∑  (28) 

The contribution of the threshold can be interpreted as the change of the conditional discounted 
EE associated with an infinitesimal shift of the threshold upwards scaled up by the actual size of 
the threshold. Note that, when the threshold goes to infinity, the last term vanishes and we 
recover the uncollateralized contributions. 

As the final step, we “allocate back” the contribution adjustment of the collateral 
threshold given by Equation (27) to the individual trades, so that Equation (28) can be written in 
terms of EE contributions only of the trades (as in Equation (11)): 

 
1

ˆ ˆ( ) ( )
N

i
i

e t e t
=

∗ ∗=∑  

There are several possibilities for allocating the amount ˆ ( )He t∗  in meaningful proportions 
to each trade. Given that that the adjustment of the trade contributions occurs when the portfolio 
value exceeds the threshold, a meaningful weighting scheme is given by the ratio of the 
individual instrument’s expected discounted value when the threshold is crossed to the total 
counterparty discounted value when this occurs: 
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 { } { }
{ }

{ }
1

( )

( ) ( )

( )

Ê ( ) ( ) 1
ˆ ˆE ( ) 1   E ( ) 1

Ê ( ) ( ) 1

N t i

t t
i

t

V t H

V t H V t H

V t H

D t V t
D t D t

D t V t=

>

> >

>

 ⋅ ⋅     ⋅ = ⋅ ⋅        ⋅ ⋅  

∑  (29) 

Thus, the individual trade contributions to EE are given by   

 { }
{ }

{ }
{ }

( )

0 ( ) ( )

( )

Ê ( ) 1
ˆ ˆˆ ( ) E ( ) ( ) 1 E ( ) ( ) 1

Ê ( ) 1

t

i t i t i

t

V t H

V t H V t H

V t H

H D t
e t D t V t D t V t

D t V

>∗
< < >

>

 ⋅ ⋅     = ⋅ + ⋅ ⋅       ⋅ ⋅  

 (30) 

Both terms of Equation (30) have a straightforward interpretation: the first term is the 
contribution of all scenarios where the bank holds no collateral at time t, while the second term is 
the contribution of all scenarios where the bank holds non-zero collateral at time t.    

We refer to the allocation scheme above as  type A allocation. An alternative allocation 
scheme (type B) is obtained by bringing the weighting scheme of the threshold contribution now 
inside the expectation operator, so that instead of Equation (29) we now have: 

 { } { } { }
1

1 1
( ) ( ) ( )

( ) ( )ˆ ˆ ˆE ( ) 1   E ( ) 1 E ( ) 1
( ) ( )

N
N N

ii i
t t t

i i
V t H V t H V t H

V t V t
D t D t D t

V t V t
=

= =
> > >

      ⋅ = ⋅ ⋅ = ⋅ ⋅        

∑∑ ∑ (31) 

This leads to the continuous marginal contributions given by 

 { } { }
*

0 ( ) ( )
( )ˆ ˆˆ ( ) E ( ) ( ) 1 E ( ) 1
( )
i

i t i tV t H V t H
V t

e t D t V t H D t
V t< < >

  = ⋅ + ⋅ ⋅ ⋅     
 (32) 

Both terms on the right hand of Equation (32) have the same interpretation as before.  

5.2  Lagged Collateral Model 

We now apply the formalism developed for the continuous collateral model to the lagged  
collateral model. In this case, the counterparty credit exposure is obtained by substituting 
Equation (6) into Equation (4): 

 { } { }0 ( ) ( ) 0 ( ) ( )
( ) ( ) 1 [ ( )] 1

V t H V t H V t V t
E t V t H V t

δ δ
δ

< ≤ + < + <
= ⋅ + + ⋅  (33) 

where ( ) ( ) ( )V t V t V t tδ δ= − −  is the change of the portfolio value from the look-back time point 
t tδ−  to the time point of interest t . Note that as the margin period of risk, tδ , vanishes, this 
expression reduces to Equation (22), which gives the exposure with instantaneous collateral. 
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Indeed, a zero margin period of risk implies a zero change of portfolio value from t tδ−  to t , 
since both time points are the same now. 

As defined for the instantaneous model, we rewrite the exposure given by Equation (33) 
as a homogeneous function in the extended vector of weights 1' ( ,..., , )N Hα α α=α :  

 { } { }0 ( , ) ( , ) 0 ( , ) ( , )
( , ) ( , ) 1 [ ( , )] 1

H H
HV t H V t H V t V t

E t V t H V t
α δ α δ

α δ
< ≤ + < + <

′ = ⋅ + + ⋅
α α α α

α α α  (34) 

where  

 
1

( , ) ( )
N

i i
i

V t V tδ α δ
=

=∑α  (35) 

and ( ) ( ) ( )i i iV t V t V t tδ δ= − − . The first derivatives of exposure with respect to the trades’ 
weights and with respect to the threshold weight are given, respectively, by 

 { } { }0 ( ) ( ) 0 ( ) ( )

( , )
( ) 1 ( ) 1i i

i
V t H V t H V t V t

E t
V t V t

δ δ
δ

α < ≤ + < + <
=′

′∂
= ⋅ + ⋅

∂ α 1

α
 (36) 

 { }0 ( ) ( )

( , )
1

i
H V t V t

E t
H

δα < + <
=′

′∂
= ⋅

∂ α 1

α
 (37) 

The sum these first derivatives across all the trades and the threshold, gives the counterparty-
level exposure, Equation (33).  By applying discounting and taking the conditional expectation 
of the right-hand side of Equations (36) and (37), we obtain the EE contributions of the trades 

 { } { }, 0 ( ) ( ) 0 ( ) ( )
ˆ ˆˆ ( ) E ( ) ( ) 1 E ( ) ( ) 1i H t i t iV t H V t H V t V t

e t D t V t D t V t
δ δ

δ∗
< ≤ + < + <

   = ⋅ ⋅ + ⋅ ⋅      
 (38) 

and of the threshold 

 { }0 ( ) ( )
ˆˆ ( ) E ( ) 1H t H V t V t

e t H D t
δ

∗
< + <

 = ⋅ ⋅  
 (39) 

Now we need to allocate back the threshold contribution, Equation (39), to the individual 
trades. Following the type A allocation scheme in the previous section, ˆ ( )He t∗  is allocated to 
individual trades in proportion to the expectation of the discounted trade values when 
0 ( ) ( )H V t V tδ< + < . This results in the trade allocations given by 
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{ } { }

{ }
{ }

{ }

0 ( ) ( ) 0 ( ) ( )

0 ( ) ( )

0 ( ) ( )

0 ( ) ( )

ˆ ˆˆ ( ) E ( ) ( ) 1 E ( ) ( ) 1

Ê ( ) ( ) 1
Ê ( ) 1

Ê ( ) ( ) 1

i t i t i

t i

t

t

V t H V t H V t V t

H V t V t

H V t V t

H V t V t

e t D t V t D t V t

D t V t
H D t

D t V t

δ δ

δ

δ

δ

δ∗
< ≤ + < + <

< + <

< + <

< + <

   = ⋅ ⋅ + ⋅ ⋅      

 ⋅ ⋅    + ⋅ ⋅ ⋅     ⋅ ⋅  

 (40) 

In the type B allocation, we bring the weighting scheme inside the expectation operator. This 
gives  

 
{ } { }

{ }

0 ( ) ( ) 0 ( ) ( )

0 ( ) ( )

ˆ ˆˆ ( ) E ( ) ( ) 1 E ( ) ( ) 1

( )
Ê ( ) 1

( )

i t i t i

i
t

V t H V t H V t V t

H V t V t

e t D t V t D t V t

V t
H D t

V t

δ δ

δ

δ∗
< ≤ + < + <

< + <

   = ⋅ ⋅ + ⋅ ⋅      

 
+ ⋅ ⋅ ⋅ 

 

 (41) 

It is straightforward to verify that the lagged EE contributions degenerate to the 
instantaneous EE contributions when 0tδ = . Substituting ( ) 0V tδ =  into Equations (40) and 
(41), we obtain Equations (30) and (32), respectively.   

6. Calculating CVA Contributions by Simulation 

Banks commonly use Monte Carlo simulation in practice to obtain the distribution of 
counterparty-level exposures. Based on these simulations a bank can also compute the 
counterparty-level CVA. In this section, we show how the calculation of EE contributions can be 
easily incorporated to the Monte Carlo simulation of the counterparty-level exposure that banks 
already perform.  

6.1  Exposure Independent of Counterparty’s Credit Quality 

Consider first the case where the exposures are independent of the counterparty’s credit 
quality. In general, banks implicitly assume that each counterparty’s exposure is independent of 
that counterparty’s credit quality when exposures are simulated separately. Let us now make this 
assumption explicitly. Then, conditioning on tτ =  in the expectations in Equations (19), (29), 
(30) and (32) become unconditional, and these conditional expectations can be replaced by the 
unconditional ones.  

The simulation algorithm for calculating counterparty-level CVA can be extended to 
calculate CVA contributions. For the ease of exposition, we assume that all the trades with the 
counterparty are nettable and that collateral (if there is any) can be described by the 
instantaneous model.  

First, the counterparty-level CVA can be calculated in a Monte Carlo simulation as 
follows:  
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1. Generate a market scenarios j  (interest rates, FX rates, etc.) for each of the future 
time points kt  

2. For each simulation time point kt  and scenario j : 

a. For each trade i, calculate trade value ( )( )j
i kV t  

b. Calculate portfolio value ( ) ( )

1
( ) ( )

Nj j
k i ki

V t V t
=

=∑  

c. If there is margin agreement, calculate collateral 
( ) ( )( ) max{ ( ) ,0}j j

k kC t V t H= −  available at time kt . 

d. Calculate counterparty-level exposure ( ) ( ) ( )( ) max{ ( ) ( ),0}j j j
k k kE t V t C t= −  (if 

there is no margin agreement, ( )( ) 0j
kC t ≡ ).  

3. After running large enough number M  of market scenarios, compute the discounted 
EE by averaging over all the market scenarios at each time point: 

( ) ( )
1

1( ) ( ) ( )
M j j

k k kjMe t D t E t
=

∗ = ∑ . 

4. Finally, compute CVA as 

1CVA (1 ) ( )[ ( ) ( )]k k kk
R e t P t P t −

∗= − −∑ , 

where, as before, R  denotes the (constant) recovery rate and ( )P t  is the unconditional 
cumulative probability of default up to time t . 

The calculation of EE and CVA contributions can be incorporated to this algorithm as 
follows.  Consider, for example, the EE contributions given by Equation (32). The following 
calculations are added to Steps 2-4: 

§ Step 2: For each trade i, calculate the trade’s exposure contribution for scenario j  
( )( )j

i kE t∗ , which is equal to ( )( )j
i kV t  if ( )0 ( )j

kV t H< ≤ , ( ) ( )( ) ( )j j
i k kHV t V t  if 

( )( )j
kV t H> , and zero otherwise.   

§ Step 3: For each trade i, compute the discounted EE contribution by averaging over 
all the market scenarios at each time point:  

( ) ( )
1

1( ) ( ) ( )
M j j

i k k i kjMe t D t E t
=

∗ = ∑ . 

§ Step 4: CVA contributions are computed as  
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1CVA (1 ) ( )[ ( ) ( )]i i k k kk
R e t P t P t −

∗= − −∑ . 

6.2  Exposure Dependent on Counterparty’s Credit Quality 

The algorithm above assumes independence between the exposure and the counterparty’s 
credit quality. More generally, there may be dependence between them which can come from 
two sources: 

§ Right/wrong-way risk. The risk is called right-way (wrong-way) if exposure tends to 
decrease (increase) when counterparty quality worsens. Strictly speaking, right/wrong-
way risk is always present, but it is usually ignored to simplify exposure modeling. 
However, there are cases when right/wrong way risk is too significant to be ignored (e.g., 
credit derivatives, commodity trades with a producer of that commodity, etc.).  

§ Exposure-limiting agreements that depend on the counterparty credit quality. One 
example such agreements is a margin agreement with the threshold dependent on the 
counterparty’s credit rating. Another example is an early termination agreement, under 
which the bank can terminate the trades with the counterparty when the counterparty’s 
rating falls below a pre-specified level.   

Both types of dependence of exposure on the counterparty’s credit quality can be 
incorporated in the EE and CVA calculation if the trade values and credit quality of the bank’s 
counterparties are simulated jointly. If a bank’s counterparty risk simulation environment is 
capable of such joint simulation, the calculation of EE and CVA contributions is also 
straightforward.  

Let us introduce a stochastic default intensity process ( )tλ  without specifying its 
underlying dynamics.11 This intensity can be used as a measure of counterparty credit quality: 
higher values of the intensity correspond to lower credit quality. The counterparty-level exposure 
( )E t  may depend either on the intensity value ( )tλ  at time t , or on the entire path of the 

intensity process ( )λ ⋅  from zero to t. We can use the intensity process to convert the expectation 
conditional on default at time t in Equation (21) to an unconditional expectation so that the 
conditional EE contribution becomes  

 
0

1ˆ ( ) E ( )exp ( ) ( ) ( )
( )

t

i ie t t s ds D t E t
P t

λ λ∗   
= −  ′    

∫  (42) 

where ( )P t′  is the first derivative of the cumulative PD ( )P t . A short derivation of Equation 
(42) is given in Appendix 1. 

                                                 
11 For an overview of stochastic default intensity and the associated Cox process, see Chapter 5 in Schönbucher 
(2003).  
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As described for unconditional EE contributions, the calculations for conditional EE 
contributions can be performed during a Monte Carlo simulation of exposures. In this case, given 
the dependence of exposures on the counterparty credit quality, the intensity process ( )λ ⋅  needs 
to be simulated jointly with the market risk factors that determine trade values. This joint 
simulation is done path-by-path: simulated values of the intensity and of the market factors at 
time kt  are obtained from the corresponding simulated values at the earlier time points 
( 1 2, ,...k kt t− − ).12 Assuming that we have already simulated the market factors and the intensity for 
times jt  for all j k< , the algorithm for computing CVA contributions for time kt  can be 
expressed as follows: 

1. Jointly simulate market risk factors and intensity ( )ktλ  at time kt  

2. For each trade i, calculate its trade value ( )i kV t  

3. Calculate the portfolio value 
1

( ) ( )
N

ii
V t V t

=
=∑  

4. For each trade i, update the EE contribution counter 

a. If there is no margin agreement, then 

− if ( ) 0V t > ,  add  ( )1 11

( )
exp ( )( ) ( ) ( )

( )
kk

j j j k i kj
k

t
t t t D t V t

P t
λ

λ − −=
− −

′ ∑  

b. If there is a margin agreement with an intensity-dependent threshold [ ( )]h λ ⋅ , then 

− if 0 ( ) [ ( )]kV t h tλ< ≤ ,  add  ( )1 11

( )
exp ( )( ) ( ) ( )

( )
kk

j j j k i kj
k

t
t t t D t V t

P t
λ

λ − −=
− −

′ ∑  

− if ( ) [ ( )]kV t h tλ> ,  add  ( )1 11

( ) ( )
exp ( )( ) ( ) [ ( )]

( ) ( )
kk i k

j j j k kj
k k

t V t
t t t D t h t

P t V t
λ

λ λ− −=
− −

′ ∑  

After running large enough number of market scenarios, EE contributions are obtained by 
dividing the EE contribution counter by the number of scenarios. 

7. Analytical CVA Contributions under a Normal Approximation 

It is also useful in practice to estimate EE and CVA contributions quickly outside of the 
simulation system. To facilitate such calculations, we derive analytical EE contributions, for the 
case when trade values are normally distributed. For simplicity, and to avoid dealing with 
stochastic discounting factors, we assume that, at time t, the distribution of trade values is given 

                                                 
12 For a discussion on path-by-path vs. direct jump to simulation date, see Pykhtin and Zhu (2007). 



 

 18

under the forward (to time t) probability measure. Under this measure, the discounted 
conditional EE in Equation (9) can be written as 

 ˆ ˆ( ) (0, )E ( ) (0, ) ( )e t B t E t t B t e tτ∗ =  =  ≡   (43) 

and the discounted unconditional EE is 

 [ ]( ) (0, )E ( ) (0, ) ( )e t B t E t B t e t∗ = ≡  (44) 

where (0, )B t  is the time-zero price of the risk-free zero-coupon bond maturing at time t. This 
change of measure allows us to work with undiscounted EEs and EE contributions.   

Assume that the value ( )iV t  of trade i at each future time t is normally distributed with 
expectation iµ  and standard deviation iσ  under the forward to t probability measure: 

 ( ) ( ) ( )i i i iV t t t Xµ σ= +  (45) 

where iX  is a standard normal variable. Correlations between these standard normal variables 
(and, therefore, between the discounted trade values) are denoted by ijr .  

Since the sum of normal variables is also normal, the discounted portfolio value ( )V t  is 
normally distributed: 

 ( ) ( ) ( )V t t t Xµ σ= +  (46) 

where X  is another standard normal variable, and the mean and standard deviation of the 
portfolio value are given by 

 
1

( ) ( )
N

i
i

t tµ µ
=

=∑       ,        2

1 1

( ) ( ) ( )
N N

ij i j
i j

t r t tσ σ σ
= =

=∑∑  (47) 

Denote by ( )i tρ  the correlation between the value ( )iV t  of trade i and the portfolio value 
( )V t . We can calculate this correlation as follows: 

 1

1

cov[ ( ), ( )] ( )cov[ ( ), ( )]
( )

( ) ( ) ( ) ( ) ( )

N
N

i jj ji
i ij

ji i

V t V t tV t V t
t r

t t t t t

σ
ρ

σ σ σ σ σ
=

=

= = =
∑

∑  (48) 

Using this correlation, we can represent iX  as 

 2( ) 1 ( )i i i iX t X t Zρ ρ= + −  (49) 
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where iZ  is a standard normal random variable independent of X (and different for each trade).  

7.1 Exposure Independent of Counterparty’s Credit Quality 

We first calculate counterparty-level EE and EE contributions assuming independence 
between exposures and counterparty credit quality. We obtain the results for the general case of a 
netting agreement with a margin agreement. The simpler case, with no margin agreement, is 
obtained as the limiting case when the threshold goes to infinity. For the clarity of exposition, we 
assume the instantaneous collateral model.   

In the presence of a margin agreement, the counterparty-level stochastic exposure is 
given by Equation (22). Substituting Equation (46) into Equation (22) and taking the expectation, 
we obtain   

 

[ ] { } { }

[ ]

( )
( )

( ) ( )
( ) ( )

0 ( ) ( ) ( ) ( )
( ) E ( ) ( ) E

( ) ( ) ( ) ( )

1 1

H t
t

t H t
t t

t t X H t t X H
e t t t X H

t t x x dx H x dx

µ
σ

µ µ
σ σ

µ σ µ σµ σ

µ σ φ φ

−

∞

−
−

< + < + >
   = + +      

= + +∫ ∫
 

where ( )φ ⋅  is the probability density of the standard normal distribution. Evaluating the integrals 
yields an analytical formula for the EE: 

 

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

t t H
e t t

t t

t t H t H
t H

t t t

µ µ
µ

σ σ

µ µ µ
σ φ φ

σ σ σ

    −
= Φ − Φ    

    

      − −
+ − + Φ      

      

 (50) 

where ( )Φ ⋅  is the standard normal cumulative distribution function.  

Let us consider now the EE contributions given by Equation (32) (type B allocations). 
Removing the discounting and substituting Equations (45) and (46) into Equation (32), we obtain 

 ( ) { } { }0 ( ) ( ) ( ) ( )
( ) ( )

( ) E ( ) ( ) E
( ) ( )

1 1i i i
i i i i t t X H t t X H

t t X
e t t t X H

t t Xµ σ µ σ
µ σ

µ σ
µ σ< + < + >

 + = + +    +   
 (51) 

Appendix 2 shows that, after some analytical manipulation, this EE contribution can be written 
as  
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( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )

i i i i

i i i

H t
t

t t H t t H
e t t t t

t t t t

t t t x
H x dx

t t xµ
σ

µ µ µ µ
µ σ ρ φ φ

σ σ σ σ

µ σ ρ
φ

µ σ

∞

−

          − −
= Φ − Φ + −          

          

+
+

+∫
 (52) 

where the remaining integral can be easily evaluated numerically. One can verify that EE 
contributions given by Equation (52) sum up to the counterparty-level EE, Equation (50). 

Similarly, we obtain the EE contributions corresponding to type A allocations as 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )( )
( ) ( ) (

( ) ( )
( )

i i i i

i i i

t t H t t H
e t t t t

t t t t

t H t H
t t t

t tt H
H

t t H
t t

t

µ µ µ µµ σ ρ φ φ
σ σ σ σ

µ µµ σ ρ φ
σ σµ

σ µ µµ σ φ
σ

          − −
= Φ − Φ + −          

          

   − −
Φ +    −    + ⋅Φ ⋅   −  Φ + 

 

)
( )

t H
tσ

 −
 
 

 (53) 

In contrast to Equation (52), the EE contributions given by Equation (53) are given in 
closed form, and do not require numerical integration.  

For the case without a margin agreement, we take the limit H → ∞  of Equations (50)-
(53). This leads to the counterparty-level EE   

 
( ) ( )

( ) ( ) ( )
( ) ( )
t t

e t t t
t t

µ µ
µ σ φ

σ σ
   

= Φ +   
   

 (54) 

and the EE contributions 

 
( ) ( )

( ) ( ) ( ) ( )
( ) ( )i i i i

t t
e t t t t

t t
µ µ

µ σ ρ φ
σ σ
   

= Φ +   
   

 (55) 

7.2 Right/Wrong-Way Risk 

We now lift the independence assumption to accommodate right/wrong-way risk. Note 
that the EE contributions obtained in the previous section are contributions of the trades in the 
portfolio to the counterparty-level unconditional discounted EE. We need to modify the 
approach to obtain the contributions to the counterparty-level EE conditional on the counterparty 
defaulting at the time when the exposure is measured. An obvious approach is to define an 
intensity process and compute the conditional EE contributions as the expectation over all 
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possible paths of the intensity process (See Appendix 1), but this requires a Monte Carlo 
simulation. In this section, we develop an alternative, simpler approach that results in closed 
form expressions for the conditional EE contributions.  

For this purpose, we define a Normal copula13 to model the codependence between the 
counterparty’s credit quality and the exposures.14  Thus, we first map the counterparty’s default 
time τ  to a standard normal random variable Y: 

 1[ ( )]Y P τ−= Φ  (56) 

where 1( )−Φ ⋅  is the inverse of the standard normal cumulative distribution function. The 
counterparty-level conditional EE is given by  

 ˆ( ) E ( )e t E t tτ=  =    (57) 

while the conditional EE contribution of trade i is given by  

 ˆ ( ) E ( )i ie t E t tτ=  =    (58) 

where ( )E t  is the counterparty-level exposure and ( )iE t  is the stochastic exposure contribution 
of trade i at time t. Since the counterparty’s cumulative probability of default ( )P ⋅  is a 
monotonic function, each possible default time is mapped to a unique value of Y. Thus, we can 
replace the conditioning on τ  in Equations (57) and (58) with the conditioning on Y and write 
the counterparty-level conditional EE and the EE contributions as 

 1ˆ( ) E ( ) [ ( )]e t E t Y P t− = =Φ   (59) 

 1ˆ ( ) E ( ) [ ( )]i ie t E t Y P t− = =Φ   (60) 

We model the right/wrong-way risk by allowing trade values to depend on Y. More 
specifically, we assume that the standard normal risk factor iX , which drives the value of trade i, 
depends on Y according to  

 2 ˆ1i i i iX bY b X= + −  (61) 

                                                 
13 The Normal copula framework was first proposed by Li (2000) to model correlated default times for pricing 
portfolio credit derivatives.  
14 See for example Garcia Cespedes et al. (2009) for the application of such a copula approach to compute 
counterparty credit capital. 
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where ˆ
iX  is a standard normal variable independent of Y. The parameter ib  drives the 

right/wrong-way risk.  When 0ib = , the value of trade i is independent of the counterparty credit 

quality. Wrong-way risk occurs when 1 0ib− ≤ <  (the value of trade i tends to increase when Y 

declines). Similarly, there is right-way risk when0 1ib< ≤  (the value of trade i tends to decrease 

when Y declines). As the magnitude of ib , increases, so does the codependence between the trade 
value and the counterparty credit quality.  

If the portfolio contains trades with non-zero ib , the standard normal risk factor X, which 
drives the portfolio value, also depends on Y: 

 2 ˆ( ) 1 ( )X t Y t Xβ β= + −  (62) 

with X̂  a standard normal variable independent of Y. The portfolio factor loading ( )tβ  can be 
computed from the individual trade factor loadings ib  as follows: 

 
1 1

cov[ ( ), ] cov[ ( ), ] ( )
( ) cov[ , ]

( ) ( ) ( )

N N
i i

i
i i

V t Y V t Y t
t X Y b

t t t
σ

β
σ σ σ= =

= = = =∑ ∑  (63) 

Now we have all the ingredients to derive the counterparty-level EE and EE contributions 
in the presence of right/wrong-way risk. One approach may be to calculate conditional 
expectations in the same manner as we have calculated the unconditional ones in the previous 
Section. However, in Appendix 2 we show how this can be done in a faster and more elegant 
way. In particular, the conditional exposure model can be formulated the in exactly the same 
mathematical terms as the unconditional model. The only difference is that instead of the 
unconditional expectations, standard deviations and correlations that specify the behavior of the 
trade values, we now use the conditional ones. Therefore, we can use all the results of Subsection 
7.1 (Equations (50)-(55)) after putting “hats” on the parameters: 15 

 [ ]1ˆ ( ) E[ ( ) | ] ( ) ( ) ( )i i i i it V t t t t b P tµ τ µ σ −≡ = = + Φ  (64) 

 2ˆ ( ) StDev[ ( ) | ] ( ) 1i i i it V t t t bσ τ σ≡ = = −  (65) 

 [ ]1ˆ ( ) E[ ( ) | ] ( ) ( ) ( ) ( )t V t t t t t P tµ τ µ σ β −≡ = = + Φ  (66) 

                                                 
15 This conclusion is consistent with the results in Redon (2006). Using a different model of right/wrong-way risk, 
they show that the conditional counterparty-level uncollateralized EE is described by the same expression as the 
unconditional EE, after replacing the unconditional expectations and standard deviations of the trade values with the 
conditional ones.    
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 2ˆ ( ) StDev[ ( ) | ] ( ) 1 ( )t V t t t tσ τ σ β≡ = = −  (67) 

 
2 2

( ) ( )ˆ ( )
(1 )[1 ( )]

i i
i

i

t b t
t

b t

ρ β
ρ

β

−
=

− −
 (68) 

7.3  Remarks on the Analytical Formulae 

In this section we briefly comment on the properties and interpretation of the analytical 
contributions derived in this section.  

Netting & no margin 

Equation (55) can be understood from the incremental viewpoint of the CMC method. 
According to Equation (17), the EE contribution of trade i is determined by the infinitesimal 
change of the counterparty-level EE resulting from an infinitesimal increase of the weight of 
trade i in the portfolio. The effect of an increase of the weight of a trade on the portfolio value 
distribution can be viewed as the sum of two effects:  

o a uniform shift of the distribution  

o a change of width of the distribution  

Let us consider these two effects separately.  

If the weight of trade i is increased by δ , the expectation of portfolio value changes by 
( )i tδ µ⋅ . Let us first ignore the change of the standard deviation and consider how a uniform 

shift of the entire distribution by ( )i tδ µ⋅  affects the counterparty-level EE. Scenarios with 

positive portfolio value contribute the same amount ( )i tδ µ⋅  to the exposure change, while 
scenarios with negative portfolio value contribute nothing. Therefore, the increment of the EE 
will be given by the product of the magnitude of the shift ( )i tδ µ⋅  and the probability of the 
portfolio value being positive. It is straightforward to verify that Pr[ ( ) 0] [ ( ) / ( )]V t t tµ σ> = Φ . 
Thus, the first term in the right-hand side of Equation (55) describes the increment of the 
counterparty-level EE resulting from the infinitesimal uniform shift of the portfolio value 
distribution associated with an increase of the weight of trade i.    

The second term of Equation (55) describes the change of the width of the portfolio value 
distribution. The change of the standard deviation of the portfolio value resulting from increasing 
the weight of trade i by δ  can be calculated as 

 
( )

( )

1
2 2

1
2 2 22

StDev[ ( ) ( )] StDev[ ( )] var[ ( )] 2 cov[ ( ), ( )] var[ ( )] ( )

( ) 2 ( ) ( ) ( ) var[ ( )] ( ) ( ) ( ) ( )

i i i

i i i i i

V t V t V t V t V t V t V t t

t t t t V t t t t O

δ δ δ σ

σ δ ρ σ σ δ σ δ ρ σ δ

+ − = + + −

= + + − = +
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where 2( )O δ  denotes the terms of the second order and higher that can be ignored. Thus, the 
portfolio value distribution is widening if the correlation ( )i tρ  is positive, and narrowing if the 
correlation is negative. A widening distribution (with no accompanying shift) always increases 
the counterparty-level EE, while narrowing always decreases it. Indeed, for a given realization of 
the portfolio value ( )V t , the change of exposure associated with the change of the standard 
deviation of the portfolio value from ( )tσ  to ( , ) ( ) ( ) ( )i it t t tσ δ σ δ ρ σ= +  is given by16 

 { }( ) 0
( ) ( )

( , ) ( ) ( ) ( ) 1
( )i i V t

V t t
E t E t t t

t
µδ δ ρ σ

σ >
−

− =  (69) 

The second term of Equation (55) can be obtained by taking the expectation of the right-hand 
side of Equation (69).  

It appears that Equation (55) has simple linear dependence on ( )i tµ  and the product 

( ) ( )i it tρ σ . However, this is only part of the true dependence. Since trade i is part of the 

portfolio, ( )tµ  depends on ( )i tµ  and ( )tσ  depends on ( )i tσ  and the correlation of trade i with 

the rest of the portfolio.  Moreover, correlation ( )i tρ  is the correlation between the values of 

trade i and the portfolio that includes trade i itself. Because of this, ( )i tρ  depends on the ratio 

( ) / ( )i t tσ σ  (see Equation (48)). Thus, unless trade i represents a negligible fraction of the 
portfolio, the true dependence of EE contribution on trade parameters is non-linear.  

Netting & margin 

In this case, only the first two terms of Equation (52) allow interpretation from the 
incremental viewpoint of the CMC method: the first term can be explained as the effect of the 
uniform shift and the second term as the effect of the widening or narrowing of the portfolio 
value distribution. The third term results from the allocation of exposure when the portfolio 
value is above the threshold. An attempt to use the CMC method would give zero EE 
contribution from ( )V t H>  scenarios.  

Equation (52) can be re-written as 

 
( )

( )

( )
( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

i i
H t

t

i i
H t

t

t t H d
e t t H

t t t t

t t H d
t t H

t t t t

µ
σ

µ
σ

µ µ φ ξ ξµ
σ σ µ σ ξ

µ µ φ ξ ξ ξσ ρ φ φ
σ σ µ σ ξ

∞

−

∞

−

 
    −

= Φ − Φ +    +    
 

 
    −

+ − +    +    
 

∫

∫

 (70) 

                                                 
16 This can be immediately seen from Equation (46).  
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As in the non-collateralized case, this EE contribution appears to be linear in ( )i tµ  and the 

product ( ) ( )i it tρ σ , but the true dependence on these quantities is more complex due to the extra 
dependence of ( )tµ  and ( )tσ  on these quantities.  

Right/wrong-way risk 

If the value of trade i is correlated with the counterparty’s credit quality, its value 
distribution at time t conditional on the counterparty’s default at time t differs from its 
unconditional value distribution. If the correlation is positive (right-way risk), the distribution 
shifts down; if the correlation is negative (wrong-way risk), the distribution shifts up. In both 
cases, the distribution becomes narrower. Under the normal approximation, the shift of the 
distribution is described by Equation (64), and the narrowing is described by Equation (65).  

An interesting property of Equation (64) is its dependence on the counterparty’s PD. To 
understand this, let us consider the bank entering into the same trade with an investment-grade 
counterparty A and with a speculative-grade counterparty B. We are interested in the trade value 
distribution conditional on the counterparty’s default at the time of observation. For the case of 
wrong (right) way risk, the deterioration of the counterparty’s credit quality to the point of 
default pushes trade values higher (lower). Since counterparty A is “further away” from default 
than counterparty B, the deterioration of credit quality to the point of default is larger for 
counterparty A. Therefore, trade values conditional on default of A are shifted more than trade 
values conditional on default of B. Note that this is not specific to the normal approximation, but 
is a general property not related to any model.  

8. Examples 

In this section, we present some simple examples that illustrate the behavior of exposure 
(and hence CVA) contributions. For ease of exposition, we assume that trade values are Normal, 
as well as market and credit independence. However, as discussed earlier in Section 7.2, the 
conclusions apply equally to the case of wrong-way risk by simply using conditional 
expectations, volatilities and correlations, instead of unconditional ones. We first present an 
example when there is no collateral agreement in place, and then show the impact of adding a 
collateral agreement to the portfolio.  

8.1 Contributions for a Non-collateralized Portfolio  

As a first step to understand this behavior, consider Equations (54) and (55), which give 
the counterparty-level EE and the EE trade contributions, in the case when there is no margin 
agreement in place: 

( ) ( )
( ) ( ) ( )

( ) ( )
t t

e t t t
t t

µ µ
µ σ φ

σ σ
   

= Φ +   
   

    ,       
( ) ( )

( ) ( ) ( ) ( )
( ) ( )i i i i

t t
e t t t t

t t
µ µ

µ σ ρ φ
σ σ
   

= Φ +   
   

 

The EE contribution of instrument i is a function of: 
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§ the mean value contribution, µi  

§ the volatility contribution, ρiσi   

§ the overall value of the ratio µ/σ (for the entire portfolio) 

where we have dropped the time variable notation for brevity. 

Both the counterparty-level EE and the trade contributions can be seen as the sum of two 
components: a mean value component (first term in the equations), and a volatility component 
(second term). These components weigh the mean value (or mean value contributions) and the 
volatility (volatility contribution), respectively, by the Normal distributions and density 
evaluated at the ratio µ/σ  (for the entire counterparty portfolio). Thus, the overall level of the 
counterparty portfolio’s mean value and volatility determine how the individual instrument’s 
mean and volatility contribution are weighted to yield the EE contributions. Figure 1 plots these 
weights as a function of µ/σ. A low ratio weighs the volatility contribution much higher; while a 
high ratio weighs mean values much more. For example, if µ/σ = -2, the volatility component 
weight is 2.4 times the mean value weight. In contrast, µ/σ = 2 results in mean values being 
weighted 18 times the volatilities.  
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Figure 1. Volatility and mean exposure weights for EE contributions. 

To illustrate the impact of various parameters on EE contributions, consider now the 
simple counterparty portfolio, which comprises of 5 transactions over a single step. Table 1 gives 
the individual trade’s mean value, variance and volatility (in dollar values and % contributions). 
The portfolio has a mean value and variance of 10. We assume that trade values are 
independent.17 In this case, the portfolio’s ratio µ/σ  = 3.16.  

 

 P1 P2 P3 P4 P5 Total 

                                                 
17 This assumption is only made for simplicity, and bears no impact on the analysis. Alternatively we can simply use 
the volatility contributions directly for any correlated model. 
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µ 0 1 2 3 4 10 

% 0% 10% 20% 30% 40% 100% 

σ 2 4 3 2 1 0 10 

% 40% 30% 20% 10% 0% 100% 

σ 2 1.7 1.4 1.0 0.0 3.2 

Table 1. Portfolio – mean values, variances and volatilities.  

The portfolio is constructed so that for each trade, its mean value and volatility are 
inversely related; thus the first instrument, P1, has the lowest mean (0) and largest volatility (2), 
while position 5 has the highest mean value (4), and lowest volatility (0). This may not only be 
reasonably realistic, but it will also help highlight some of the points below. 

Using Equations (54) and (55), we compute the EE and contributions for the portfolio. 
The EE for the portfolio is 10.001, with most of this arising from the mean value component 
(9.992). The trade contributions to EE are fairly close to the contributions to the mean values in 
Table 1 (0.03%, 10.02%, 20.00%, 29.98%, 39.97%).  

Now, we vary the overall mean value of the portfolio, µ, while leaving intact the 
volatility, σ, as well as the percent contributions of each instrument to the mean exposure and 
volatility in table 1. This allows us to express the trade contributions in terms of how deep in- or 
out-of-the-money the counterparty portfolio is (relative to its volatility). Figure 2 plots the EE, as 
well as its mean and volatility components, as functions of the portfolio’s µ/σ. For large negative 
portfolio mean values, the EE (red line) is zero. In this case, the mean value component of EE is 
actually negative, and the volatility component compensates for this to generate positive EEs. As 
µ/σ increases beyond zero, the volatility component decreases and, once  µ/σ > 2, the EE is 
completely dominated by the mean value. 
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Figure 2. EE as a function of the portfolio’s ratio µ/σ. 

Figure 3 shows the EE contributions for each of the 5 trades as a function of µ/σ. There is 
a clear shift in dominance between the mean and volatility components as the portfolio’s mean 
value increases. At one side of the spectrum, when the mean portfolio values are negative, trades 
4 and 5, which have the largest (negative) mean values and lowest volatilities, produce very large 
negative EE contributions. The opposite occurs for trades 1 and 2 (with low negative means and 
large volatilities). As the portfolio’s µ/σ increases, trades 4 and 5 end up dominating the 
contributions, with the EE contribution converging to the mean value contributions themselves. 
For this particular symmetric portfolio, every trade contributes 20% of EE at µ/σ  = 0.506.  
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Figure 3. EE Contributions as a function of the portfolio’s ratio µ/σ. 

8.2 Contributions for a Collateralized Portfolio  

We consider now the case when there is a margin agreement, and demonstrate the impact of 
the collateral on the trade contributions. In very general terms: 

§ As the threshold becomes very large, trade contributions converge to those of 
uncollateralized exposures; 

§ With lower thresholds, the contributions of more volatile exposures are diminished (as 
the threshold caps the exposures), and contributions of higher mean exposures (in-the-
money positions) increase. 

Consider the same portfolio in table 1, but assume now that there is a collateral agreement in 
place where margins are placed instantaneously. First, we characterize the impact of the 
threshold on the counterparty level EE. Figure 4 shows the reductions in EE as a result of the 
margin agreement (as % of uncollateralized EE) as a function of µ/σ , and for various levels of 
the (standardized) collateral threshold. 
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Exposure reductions with collateral 
as a funciton of H/Sigma
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Figure 4. EE reductions from a collateral agreement. 

As the threshold is increased, the EE reductions decrease, as expected. Also, the collateral 
thresholds become more effective at reducing EE as the portfolio is deeper in-the-money (i.e. 
when µ/σ increases). For example, a normalized threshold of 2 does not reduce EE until the 
portfolio’s mean value is positive. At a value of µ/σ = 5, it reduces EE by about 60%.  

Figure 5 plots the EE contributions for the case µ/σ = 1, as a function of the standardized 
threshold, H/σ. At high threshold values, H/σ > 4, trade contributions are essentially the 
uncollateralized contributions. Conversely at low H/σ  values, EE contributions are basically the 
mean value contributions. The presence of the collateral affects each instrument’s contributions 
differently. In particular, a tighter threshold increases the percent contributions of trades P4 and 
P5 (which have the highest mean values) while reducing the contributions of P1 and P2 (the 
lowest mean values). These eventually converge in the limit to the mean value contributions.  
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Figure 5. EE contributions as a function of the collateral threshold. 

Note finally that a trivial case arises when the ratio µ/σ =0. In this case, the EE contributions 
are independent of the threshold level H/σ  and equal the uncollateralized contributions. 
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9. Conclusions 

Counterparty credit risk is usually measured and priced at the counterparty level. The 
price of the counterparty risk for the entire portfolio of trades with a counterparty is known as 
credit valuation adjustment (CVA). In this article we have proposed a methodology for allocation 
of the counterparty-level CVA to individual trades. These allocations are additive, so that one 
can aggregate the CVA allocations for any collection of trades with different counterparties. 
Thus, the contribution of all trades belonging to a certain class to the bank-level CVA can be 
calculated. Such a class can be defined as “all trades booked by a certain business unit”, “all 
EUR interest rate swaptions”, etc.  

In this paper, we show that the calculation of CVA allocations can be reduced to the 
calculation of contributions of individual trades to the counterparty-level expected exposure (EE) 
conditional on the counterparty’s default. To obtain conditional EE contributions, we adapt the 
continuous marginal contribution method which is often used for allocating economic capital. 
The method is directly applicable for CVA contributions only when the counterparty-level 
exposure is a homogeneous function of the trades’ weights in the portfolio. This is the case when 
there are no collateral or margin agreements. We extend the methodology to deal with non-
homogeneous exposures of the type encountered when the portfolios have margin agreements.  

We further show how the calculations of conditional EE contributions can be 
incorporated into an existing exposure simulation process. In addition, the ability to make quick 
calculations of CVA allocations outside of the exposure simulation system may be also desirable. 
To facilitate such calculations, we derive closed form expressions for unconditional EE 
contributions under the assumption that trade values are normally distributed. By using 
unconditional EEs in the CVA calculations, one implicitly assumes that exposures are 
independent of the counterparty credit quality. To overcome this limitation, we extend the results 
for conditional EE contributions in the normal approximation, which incorporate dependence 
between the trade values and the counterparty’s credit quality.  
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Appendix 1. Derivation of Equation (42)  

Suppose we have a random variable W and we want to calculate its expectation 
conditional on the counterparty defaulting at time t ( tτ = ). We can express this expectation as 

 
{ }

{ }

E 1
E

E 1

t t dt

t t dt
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W t

τ

τ

τ
< ≤ +

< ≤ +

 
   =  =   
  

 (71) 

Then, for the numerator of Equation (55) we can write  
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For the denominator, we can write 

 { } [ ]E 1 Pr ( )
t t dt

t t dt P t dtτ τ
< ≤ +

  ′= < ≤ + =  
 

where ( )P t′  is the first derivative of the cumulative probability of default ( )P t . Substituting both 
expressions in Equation (71), we obtain 
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Appendix 2. Analytical Results under Normal Approximation. 

A2.1 Exposure Independent of Counterparty’s Credit Quality 

We derive now Equation (52) from Equation (51), which we restate here for convenience:  
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Substituting Equation (49) and inserting the expectation conditional on X inside each of the 
unconditional expectations, we obtain 
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While evaluating of the first integral is straightforward, there is no closed form solution for the 
second one. This results in Equation (42): 
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A2.2 EE Contributions under Right/Wrong-way Risk 

We present the derivation of the analytical EE contributions when exposures are 
correlated with the counterparty credit quality. Specifically, we show that we can use Equations 
(51)-(55), with the only difference that instead of using the unconditional expectations, standard 
deviations and correlations that specify the behavior of the trade values, we now use the 
conditional ones.  

From conditional expectation to conditional random variables 

The conditional expectation of a random variable can always be formulated as the 
unconditional expectation of a conditional random variable. For example, the counterparty-level 
conditional EE in Equation (59) can be represented as 

 ˆˆ( ) E ( )e t E t =    (72) 

while the conditional EE contribution in Equation (60) can be written as  
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 ˆˆ ( ) E ( )i ie t E t =    (73) 

where ˆ ( )E t  is the conditional counterparty-level exposure and ˆ ( )iE t  is the conditional stochastic 
exposure contribution of trade i. These conditional quantities are determined from the 
conditional trade values in exactly the same manner as the unconditional exposure and exposure 
contributions are determined from the unconditional trade values.  

Conditional trade values are calculated as follows. By substituting Equation (61) into 
Equation (45) and setting 1[ ( )]Y P t−=Φ , we obtain the value ˆ( )iV t  of trade i conditional on the 
counterparty defaulting at time t:  

 ˆ ˆˆ ˆ( ) ( ) ( )i i i iV t t t Xµ σ= +  (74) 

where ˆ ( )i tµ  is the conditional expectation of ( )iV t  given by 

 [ ]1ˆ ( ) E[ ( ) | ] ( ) ( ) ( )i i i i it V t t t t b P tµ τ µ σ −≡ = = + Φ  (75) 

and ˆ ( )i tσ  is the conditional standard deviation of ( )iV t  given by 

 2ˆ ( ) StDev[ ( ) | ] ( ) 1i i i it V t t t bσ τ σ≡ = = −  (76) 

The conditional portfolio value ˆ( )V t  is obtained by substituting Equation (62) into Equation (46) 

and setting 1[ ( )]Y P t−=Φ :  

 ˆ ˆˆ ˆ( ) ( ) ( )V t t t Xµ σ= +  (77) 

where ˆ ( )tµ  is the conditional expectation of ( )V t  given by 

 [ ]1ˆ ( ) E[ ( ) | ] ( ) ( ) ( ) ( )t V t t t t t P tµ τ µ σ β −≡ = = + Φ  (78) 

and ˆ ( )tσ  is the conditional standard deviation of ( )V t  given by 

 2ˆ ( ) StDev[ ( ) | ] ( ) 1 ( )t V t t t tσ τ σ β≡ = = −  (79) 

Finally, we need the correlation between the conditional trade value and the conditional 
portfolio value. Let us denote the correlation between ˆ( )iV t  and ˆ( )V t  by ˆ ( )i tρ . To obtain this 

correlation, let us use Equations (61) and (62) to calculate the covariance between iX  and X: 
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 2 2 ˆcov( , ) ( ) 1 1 ( ) ( )i i i iX X b t b t tβ β ρ= + − −  

where we have taken into account that both ˆ
iX  and X̂  are independent of Y. Realizing that 

cov( , )iX X  is nothing but the unconditional correlation ( )i tρ  given by Equation (48) , we obtain   

 
2 2

( ) ( )ˆ ( )
(1 )[1 ( )]

i i
i

i

t b t
t

b t

ρ β
ρ

β

−
=

− −
 (80) 

Note that ˆ ( )i tρ  can also be interpreted as the correlation between the value ( )iV t  of trade 
i at time t and the portfolio value ( )V t  at time t, conditional on the counterparty’s default at time 
t. When no right/wrong-way risk is present in the portfolio, all  0ib =  and, as a consequence of 

Equation (63), ( ) 0tβ = . Then, Equation (68) reduces to ˆ ( ) ( )i it tρ ρ= , and the conditional 
correlation becomes the unconditional one, as one would expect. Using this correlation, we can 
express ˆ iX  as  

 2ˆ ˆ ˆˆ ˆ( ) 1 ( )i i i iX t X t Zρ ρ= + −  (81) 

where ˆ
iZ  is a standard normal random variable independent of X̂ . Equation (81) is the 

conditional version of Equation (49).   

Now we have formulated the conditional exposure model in exactly the same 
mathematical terms as the unconditional model of Section 7 and can use all the results of 
Subsection 7.1 after putting “hats” on the parameters!   
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